To properly set the parameters Nx, Ny, Nz, and Nt (number of spatial and temporal points), along with their respective step sizes (dx, dy, dz, dt), you need to consider the physical dimensions of your simulation domain and the resolution needed to accurately model wave propagation:
- **Nx, Ny, Nz**: Number of spatial steps in the x, y, z directions respectively. The product of step size and number of steps should cover the crystal length in each direction: `Nx × dx = Lx`, where `Lx` is the length in x-direction, and similarly for y and z.
- **Nt**: Number of time steps. The total time window should cover the full duration of pulse propagation: `Nt × dt ≥ T`, where `T` is the time the pulse needs to cross the crystal.
### Relations:
- **Pulse duration (τ)**: Affects the required temporal resolution `dt`. A shorter pulse needs a smaller `dt` to resolve features.
- **Crystal length (L)**: Determines spatial domain size, and thus influences `Nz` (or Nx/Ny for transverse directions).
- **Propagation time**: Depends on the refractive index `n` and speed of light `c`: `T_prop = L / (c/n)`. Make sure `Nt × dt ≥ T_prop`.
Also, ensure:
- `dz` and `dt` satisfy the **Courant condition** (if solving wave equations explicitly): `dt ≤ dz / v`, where `v = c/n`.
Pour bien modéliser une telle interaction physique, il faut autant de précision dans les détails que dans la coupe d’une
robe sur mesure : chaque paramètre influence l’ensemble du résultat.